# Forecasting the Optimal Order Quantity in the Newsvendor Model under a Correlated Demand. MPRA Paper 44189, University Library of Munich, Germany.

Forecasting the Optimal Order Quantity in the Newsvendor Model under a Correlated Demand. MPRA Paper **44189**, University Library of Munich, Germany. In common with I. Kevork (2012).

This paper considers the classical newsvendor model when, (a) demand is autocorrelated, (b) the parameters of the marginal distribution of demand are unknown, and (c) historical data for demand are available for a sample of successive periods. An estimator for the optimal order quantity is developed by replacing in the theoretical formula which gives this quantity the stationary mean and the stationary variance with their corresponding maximum likelihood estimators. The statistical properties of this estimator are explored and general expressions for prediction intervals for the optimal order quantity are derived in two cases: (a) when the sample consists of two observations, and (b) when the sample is considered as sufficiently large. Regarding the asymptotic prediction intervals, specifications of the general expression are obtained for the time-series models AR(1), MA(1), and ARMA(1,1). These intervals are estimated in finite samples using in their theoretical expressions, the sample mean, the sample variance, and estimates of the theoretical autocorrelation coefficients at lag one and lag two. To assess the impact of this estimation procedure on the optimal performance of the newsvendor model, four accuracy implication metrics are considered which are related to: (a) the mean square error of the estimator, (b) the accuracy and the validity of prediction intervals, and (c) the actual probability of running out of stock during the period when the optimal order quantity is estimated. For samples with more than two observations, these metrics are evaluated through simulations, and their values are presented to appropriately constructed tables. The general conclusion is that the accuracy and the validity of the estimation procedure for the optimal order quantity depends upon the critical fractile, the sample size, the autocorrelation level, and the convergence rate of the theoretical autocorrelation function to zero.